Determinants of competitive antagonist sensitivity on neuronal nicotinic receptor beta subunits.

نویسندگان

  • S C Harvey
  • C W Luetje
چکیده

We constructed a series of chimeric and mutant neuronal nicotinic acetylcholine receptor beta subunits to map amino acid residues that determine sensitivity to competitive antagonists. The beta 2 and beta 4 subunits form pharmacologically distinct receptors when expressed in combination with the alpha 3 subunit in Xenopus oocytes. At equipotent acetylcholine concentrations, alpha 3 beta 2 is 56-fold more sensitive to blockage by dihydro-beta-erythroidine than is alpha 3 beta 4. The alpha 3 beta 2 combination is also sensitive to long-term blockade by neuronal bungarotoxin, whereas alpha 3 beta 4 is not. Pharmacological analysis of receptors formed by chimeric beta subunits reveals that amino acid residues that determine both dihydro-beta-erythroidine and neuronal bungarotoxin sensitivity are located within several sequence segments. The major determinant of sensitivity to both competitive antagonists is located between residues 54 and 63. A minor determinant of sensitivity to both antagonists lies between residues 1 and 54, whereas a minor determinant of NBT sensitivity lies between residues 74 and 80. Within region 54-63 of beta 2, mutant beta 2 subunits were used to identify threonine 59 as a residue critical in determining competitive antagonist sensitivity. Changing threonine 59 to lysine, as occurs in beta 4, causes a 9-fold decrease in dihydro-beta-erythroidine sensitivity and a 71-fold decrease in neuronal bungarotoxin sensitivity. Changing polar threonine 59 to negatively charged aspartate causes a 2.5-fold increase in neuronal bungarotoxin sensitivity and has no effect on dihydro-beta-erythroidine sensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glycosylation within the cysteine loop and six residues near conserved Cys192/Cys193 are determinants of neuronal bungarotoxin sensitivity on the neuronal nicotinic receptor alpha3 subunit.

Neuronal bungarotoxin (NBT) is a highly selective, slowly reversible, competitive antagonist of the alpha3beta2 neuronal nicotinic receptor. Contributions to NBT sensitivity are made by both the alpha3 and beta2 subunits. We used a chimeric alpha subunit to demonstrate that the entire alpha3 contribution lies within sequence segment 84-215. Construction and analysis of a series of mutant alpha3...

متن کامل

Determinants of Specificity for a-Conotoxin MII on a3b2 Neuronal Nicotinic Receptors

The competitive antagonist a-conotoxin-MII (a-CTx-MII) is highly selective for the a3b2 neuronal nicotinic receptor. Other receptor subunit combinations (a2b2, a4b2, a3b4) are .200fold less sensitive to blockade by this toxin. Using chimeric and mutant subunits, we identified amino acid residues of a3 and b2 that participate in determination of a-CTx-MII sensitivity. Chimeric a subunits, constr...

متن کامل

Activation and inhibition of mouse muscle and neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes.

Transgenic mouse models with nicotinic acetylcholine receptor (nAChR) knockouts and knockins have provided important insights into the molecular substrates of addiction and disease. However, most studies of heterologously expressed neuronal nAChR have used clones obtained from other species, usually human or rat. In this work, we use mouse clones expressed in Xenopus oocytes to provide a relati...

متن کامل

Two domains of the beta subunit of neuronal nicotinic acetylcholine receptors contribute to the affinity of substance P.

Substance P is known to noncompetitively inhibit activation of muscle and neuronal nicotinic acetylcholine receptors. Neuronal nicotinic receptors formed from different combinations of alpha and beta subunits exhibited differential sensitivity to substance P, with those containing beta-4 subunits having a 25-fold higher affinity than those having beta-2 subunits. To identify the regions and/or ...

متن کامل

Formation of the nicotinic acetylcholine receptor binding sites.

Nicotinic acetylcholine receptors (AChRs) are activated by ACh binding to two sites located on different alpha subunits. The two alpha subunits, alpha gamma and alpha delta, are distinguished by their interface with gamma and delta subunits. We have characterized the formation of the ACh binding sites and found, contrary to the current model, that the sites form at different times and in a set ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 12  شماره 

صفحات  -

تاریخ انتشار 1996